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Topological crystallography of gas hydrates
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A new approach to the investigation of the proton-disordered structure of

clathrate hydrates is presented. This approach is based on topological

crystallography. The quotient graphs were built for the unit cells of the cubic

structure I and the hexagonal structure H. This is a very convenient way to

represent the topology of a hydrogen-bonding network under periodic

boundary conditions. The exact proton configuration statistics for the unit cells

of structure I and structure H were obtained using the quotient graphs. In

addition, the statistical analysis of the proton transfer along hydrogen-bonded

chains was carried out.

1. Introduction

Crystallography is a well established science. However, it is

impossible to describe the structure of ordinary ice and other

ice-like systems using the standard methods of crystal-

lography. The main reason is that the ice itself is not a crystal

in the usual sense of the word (Petrenko & Whitworth, 1999;

Malenkov, 2009). The crystal lattice of ice and ice-like systems

determines only the position of the oxygen atoms. The posi-

tions of the hydrogen atoms are disordered. The number of

defect-free proton configurations is huge and increases

exponentially with the size of the system (Bernal & Fowler,

1933; Pauling, 1935). At the same time, these configurations

may differ significantly in the binding energy and other char-

acteristics (Kuo & Singer, 2003; Hirsch & Ojamäe, 2004; Yoo et

al., 2009; Takeuchi et al., 2013). Furthermore, in ice and ice-

like systems the positions of protons are constantly changing

due to random migration of protons along hydrogen-bonded

chains (Petrenko & Whitworth, 1999). Therefore, in a real

experiment, we have to deal with a superposition of many

states. The theoretical description of the structure of ice-like

systems should take into account the variety and diversity of

proton configurations, as well as the dynamic variability of the

structure of the proton subsystem. In this situation, repre-

sentative sets of the proton configurations may be interesting.

The sets of all proton configurations for the unit cells or

extended cells with periodic boundary conditions are of most

interest (Hirsch & Ojamäe, 2004; Kirov, 2010; Takeuchi et al.,

2013). They can be used for computer simulation.

Periodic boundary conditions (PBCs) for ice-like systems

imply that the orientations of water molecules must be coor-

dinated not only inside the modelling box, but also on the

opposite boundaries of this box. Generation and enumeration

of such correlated structures is not a trivial problem of

combinatorial optimization. Methods for solving these

problems are well known. However, there is an alternative

approach, which allows us to circumvent the problem of

boundary correspondence. This approach is based on topo-
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logical crystallography (Sunada, 2012). The origin of this

scientific discipline is connected with the name of A. F. Wells

(1977). One of the most important concepts of topological

crystallography is a quotient graph of crystal structure (Chung

et al., 1984; Delgado-Friedrichs & O’Keeffe, 2005; Eon, 2005;

Blatov & Proserpio, 2011). It is also called a finite fundamental

graph or factor graph. According to Krivovichev (2013), the

quotient graph of an infinite 3-periodic network is the finite

graph that is obtained by projection of all translationally

equivalent vertices (edges) of the network onto one vertex

(edge) of the finite graph.

For an ice-like system, the quotient graph is a compact 4-

connected graph. This graph depicts adequately the topology

of the hydrogen bonding both inside the modelling box and at

the interface with adjacent boxes. This graph has no outer

unrealized hydrogen bonds. Hydrogen bonds, which pass

through the opposite sides of the modelling box, are short-

circuited due to PBCs. As a result, we obtain a finite uniform

digraph which completely depicts the hydrogen-bonding

topology and proton disorder combinatorics of the initial

crystal lattice under PBCs. Configurations of the initial unit

cell with PBCs and configurations of the quotient graph are in

one-to-one correspondence. Any of them can be easily

restored by the other. But it is more convenient to deal with a

finite graph. For example, it is much easier to study the

statistical regularities of the proton transfer in hydrogen bonds

because the quotient graph has no boundaries. Note also the

fact that topological crystallography definitely has a heuristic

potential for finding new hydrogen-bonding topologies. So,

using this approach for the unit cell of ice Ih, we predicted a

new form of ice bilayer (Kirov, 2012).

In this article we present the quotient graphs for the unit

cells of well known clathrate hydrate structures I and H (see,

for instance, Sloan, 1998). Using these graphs, the statistics of

proton disorder in the unit cells under PBCs were studied. It

allows us to confirm our previous results for the total number

of proton configurations (Kirov, 2010). This is especially

important as there are some differences between our results

and the results of Takeuchi et al. (2013). On the basis of

topological crystallography, we have obtained a quasi-one-

dimensional representation of the unit cells of structures I

with PBCs in two perpendicular directions. It allows us to

confirm our previous result for the unit cell (1 � 1 � 1) and to

calculate the exact number of Bernal–Fowler configurations

for the extended cell (2 � 1 � 1). Also we have studied the

statistics of random proton transfer along hydrogen-bonded

chains in structures I and H, using the quotient graphs.

2. Topological closure and the quotient graphs

2.1. Hexagonal ice Ih

Before proceeding to clathrate hydrates, let us consider the

structure of the orthorhombic unit cell of hexagonal ice

consisting of eight water molecules (Fig. 1a). The small size of

the unit cell allows us to consider this cell as a toy-model to

demonstrate the basic concepts of topological crystallography,

as applied to ice-like systems. We indicate by arrows the

direction of the hydrogen bonds: from

the proton donor to the acceptor.

Because of PBCs in the vertical direc-

tion, the hydrogen bonds indicated in

Fig. 1(a) by arrows have the same

direction. From topological and combi-

natorial standpoints, we can consider

that corresponding upper and lower

water molecules are connected directly.

The fact is that in the topological sense

the crystal as a whole becomes equiva-

lent to hexagonal bilayer ice. Further

application of PBCs in the remaining

two directions (Fig. 1b) leads to the

structures shown in Figs. 1(c), 1(d).

Each of these quasi-one-dimensional

structures represents an extended unit

cell of ice Ih with PBCs in transverse

directions (Kirov, 2012). In both cases,

application of PBCs along the two-

section fragments leads to the structure

which is equivalent to the initial unit

cell of ice Ih with PBCs in all three

directions. The resulting structure (Fig.

1e) is the same for both quasi-one-

dimensional systems (Figs. 1c, 1d). This

is just the quotient graph of ice Ih with

PBCs on the faces of the orthorhombic
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Figure 1
Topological transformations of hexagonal ice fragments: (a) the structure of hexagonal ice Ih; (b)
view from above, the unit cells are shown by grey lines; (c), (d) two-layer ice fragments; (e) quotient
graph for orthogonal unit cell of hexagonal ice Ih; (f) calculation schema for the transfer matrix.



unit cell. An appearance of artificial biangle cycles is due to

the small size of the cell used.

Topological transformations of this kind facilitate calcula-

tion of the total number of defect-free configurations that

satisfy the well known ice rules (Bernal & Fowler, 1933). They

are also known as Bernal–Fowler rules. These rules imply that

two arrows are incoming and two are outgoing at each vertex.

The total number of configurations in any quasi-one-dimen-

sional system can be found using the transfer matrix method

(Kramers & Wannier, 1941). Recently, such calculations were

carried out for ice-like systems (Kirov, 2009, 2013; Tokmachev

& Dronskowski, 2010, 2011). The numbers of Bernal–Fowler

configurations in a separate section for all possible directions

of the external horizontal hydrogen bonds on the left and right

are shown in Fig. 1(f). They form the transfer matrix M, the

size of which is determined by the total number of possible

directions of the external bonds from one side of the section.

Using the transfer matrix method, the number of proton

configurations of an n-element ice-like system with PBCs can

be calculated from the following well known formula:

Xn ¼ Tr Mn
ð Þ ¼

PN

i¼1

�n
i : ð1Þ

As mentioned, the unit cell of ice Ih corresponds to two

elements of the strip. The number of Bernal–Fowler config-

urations in this cell is equal to the trace of the square of the

transfer matrix: Tr(M2). To put it another way, taking into

account that the eigenvalues of the 4 � 4 transfer matrix (see

Fig. 1f) can be easily calculated and the values are �1 = 9, �2,3 =

4, �4 = 1 (Kirov, 2012), the total number of configurations in

the unit cell of ice Ih is 92 + 2�42 + 1 = 114. This number is well

known (Lekner, 1998), but the approach, which is based on

topological crystallography, allows us to find it easily.

2.2. Structure I clathrate hydrate with periodicity in two
directions

The unit cell of structure I contains 46 water molecules (Fig.

2a) which enclose two different types of cavities: a pentagonal

dodecahedral cavity D (512) and a tetracaidecahedral cavity T

(51262). Two large cavities T can be easily seen in Fig. 2(a). The

unit cell includes 36 molecules of the two depicted cavities T

(only positions of oxygen atoms are shown). In addition, ten

side molecules (six at the left and four at the rear face) can be

related to this unit cell. These molecules are depicted by black

circles. As a result, we have all 46 molecules per one unit cell.

There are two molecules on each of the four vertical edges

of the cubic cell. We can make a conclusion, taking into

account the symmetry: in an equivalent compact graph the

four pairs correspond to one pair of vertices. The pair is

located on a vertical line that passes through the centre of the

unit cell. Besides, because of the symmetry, two remaining

pairs of molecules of the left lateral face (and their images to

the right) are mapped on the parallel plane that passes

through the centre of the cell. This forms a hexagon (Fig. 2b)

which is perpendicular to the plane of the figure. Analogously,

four water molecules arranged on the rear face and their

images (on the front face) are projected on the parallel plane,

passing through the centre of the cell. As a result, inside the

vertical row of cavities T, a chain of hexagons is formed.

Conservation of the hydrogen-bonding topology leads to the

graph shown in Fig. 2(b). It should be added that four opposite

pairs of vertices (small grey circles) are directly connected to

each other (two pairs are shown by arrows).

In a topological sense, the structure obtained is absolutely

equivalent to the initial unit cell (Fig. 2). In order to calculate

the total number of Bernal–Fowler configurations, we can use

the transfer matrix method (see x2.1). Note that, in this case,

two sections of a quasi-one-dimensional system (two cavities

T) are included in one unit cell. The size of the transfer matrix

is equal to the number of all different directions of outer

hydrogen bonds for each section. Note that only allowed

configurations of the hexagonal cycles might be used. The

number of Bernal–Fowler configurations for a hexagonal ring

of water molecules is 36 + 1 = 730 (Kirov, 2009). But here it is

necessary to take into account four cases of the direction of

two vertical hydrogen bonds which pass through horizontal

hexagonal rings. Therefore, the size of the transfer matrix is

2920 � 2920. Another important point is that here we need

two different transfer matrices, as the cavities are differently

oriented. The first matrix A specifies the number of allowed

configurations Aij in the lower cavity for all possible directions

of defining hydrogen bonds at the bottom and top of the cavity

(hexagon and two vertical hydrogen bonds). The second

matrix B specifies the number of proton configurations in the

upper cavity Bjk for all directions of outer hydrogen bonds. For

the whole unit cell, the transfer matrix M is a product of two

matrices: A and B. When PBCs also apply in the vertical

direction then, according to equation (1), the number of

proton configurations Xn = Tr (Mn), where M = A � B, and n is

the length of the extended unit cell (1 � 1 � n). The transfer

matrices A and B were calculated using a special program. It

was found that for the unit cell with PBCs in all three direc-

tions the number of Bernal–Fowler configurations X1 = Tr (M)

= 822 823 440. Along the way, we have obtained the exact

number of proton configurations in the extended cell (1� 1�

2): X2 = Tr (M2) = 208 662 423 394 711 512. The number X1 is
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Figure 2
Topological transformations of the unit cell for structure I of clathrate
hydrates.



consistent with our previous result (Kirov, 2010), which was

obtained using a more cumbersome method. At the same time,

this number is significantly different from the number

obtained by Takeuchi et al. (2013), which is equal to

685 686 200, i.e. exactly 5/6 of our result.

Note that the transfer matrix M allows us to calculate the

exact asymptotic value of the residual entropy for infinite

extension of the unit cell in one direction (1� 1� n), i.e. when

n!1. According to equation (1), the asymptotic number of

proton configurations is determined by the maximum eigen-

value of the transfer matrix. The maximum eigenvalue was

calculated using the iterative power method (Larson, 2013):

�max’ 3.6012886�108. Therefore, the asymptotic value of the

residual entropy for the one-dimensionally extended unit cell

of structure I is S = ln(�max)/46 ’ 0.428304. This is a limit of

the sequence S1 = ln(X1)/46 = 0.446266, S2 = ln(X2)/92 =

0.433472 etc. Because of cubic symmetry of the unit cell for

structure I, all variants of the one-dimensional expansion (n�

1 � 1, 1 � n � 1 and 1 � 1 � n) are equivalent.

2.3. The quotient graphs of the unit cells of sI and sH
clathrate hydrates

For the unit cell of structure I with three-dimensional PBCs,

the direction of the upper and lower hydrogen bonds in Fig.

2(b) should be identical. So we may consider them as the same

hydrogen bonds that connect corresponding nodes of the

hydrogen-bond network. The resulting completely closed

network is one of the representations of the quotient graphs

for initial crystal lattices. There are many drawings of the same

quotient graph. Topologically, they all are completely

equivalent to the initial structures with PBCs. It is convenient

to depict all nodes in the interior of one cavity and on its

surface. The new choice of the unit cell for the structure I

which corresponds to lateral shift by half a period is shown in

Fig. 3 (cf. Fig. 2a). Besides 20 molecules of small cavity D there

are eight inner molecules, which are indicated by white circles.

For one of them (double circle) the topology of hydrogen

bonding may be seen in Fig. 3. In addition, six molecules are

located on each face of the cubic unit cell. Overall, there are 20

+ 8 + 36/2 = 46 molecules per unit cell. Pairs of translationally

equivalent hydrogen bonds on the surface are shown by bold

lines. For the cavity-based quotient graphs it is possible to use

a simple algorithm to compute the coordinates of all vertices

of the quotient graph:

(i) Specify and fix the coordinates of all vertices for one

cavity.

(ii) Enumerate all vertices and list all inner hydrogen bonds

that do not belong to the cavity surface, i.e. for each inner

hydrogen bond specify the pairs of vertices taking into account

PBCs.

(iii) For all listed hydrogen bonds that do not belong to the

cavity, write the sum of the squares of the lengths, as a function

of free (unknown) coordinates.

(iv) Minimize this function in order to find the coordinates

of inner vertices of the cavity.

Note that minimizing the sum of squares of lengths of all

inner hydrogen bonds (all partial derivatives are zero) is

equivalent to a system of linear equations. At the same time,

the standard software may be used to find the minimum of a

function of several variables without calculating derivatives. In

addition, the vertices obtained in this way can be easily

redistributed in radial directions by using elementary trans-

formations. They might be concentrated toward the centre or,
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Figure 3
Positions of oxygen atoms of water molecules and hydrogen bonding in
the unit cell of structure I.

Figure 4
Quotient graphs of structure I which are based on the cages D (a) and T
(b).



on the contrary, away from the centre. A similar method has

been used previously to construct planar images (Schlegel

diagrams) for large multicage hydrate structures (Kirov, 2003).

For the quotient graph of structure I, the hydrogen-bonding

topology (pairs of vertices for each hydrogen bond) can be

specified using Fig. 2(a), Fig. 2(b) or Fig. 3. The quotient graph

based on cavity D is shown in Fig. 4(a). The inner part of the

graph is a cube (eight molecules), belted by three hexagons

(18 molecules). Taking into account 20 molecules of external

cavity D, we have all 46 molecules of the unit cell. Molecules

that belong to both the cube and hexagons take part in the

formation of four internal hydrogen bonds. Each molecule in

the cube vertex, along with three internal hydrogen bonds,

forms one bond with the outer cavity. Finally, molecules of

hexagons which do not belong to the cube are connected with

two molecules of the external cavity.

The usability, i.e. clarity and understandability, of the

quotient graphs strongly depends on the location of inner

vertices. The cubic arrangement of internal vertices in the

quotient graph (Fig. 4a) was obtained using the above algo-

rithm and additional redistribution of internal points in the

radial direction. Note that the cubic symmetry of the unit cell

of structure I is in good agreement with the symmetry of the

external cavity. The second representation of the quotient

graph that is based on cavity T is less convenient (Fig. 4b).

Finding the best visual representation of the quotient graph is

a separate problem. But it is important to stress that here we

have two different drawings of the same quotient graph. They

both correspond to the same unit cell with PBCs. Therefore, it

is sufficient to have at least one easy-to-use quotient graph.

The hexagonal structure H is shown in Fig. 5(a). This

structure has three types of cavities. There are two small

cavities D (512) and one small cavity D0 (435663) per unit cell.

Both of these cavities are composed of 20 molecules. In

addition, there is a large cavity E (51268) that consists of 36

molecules (Sloan, 1998). The location of large and small

cavities can be seen in Fig. 5(a). In general, there are 34 water

molecules per unit cell. Therefore, it is difficult to construct a

quotient graph using the large cavity E. The positions of all

molecules in the unit cell are depicted in Fig. 5(b). However,

the hexagonal symmetry of the unit cell (see equivalent

hydrogen bonds in Fig. 5b) makes the quotient graphs, which

are based on cavities D and D0, less obvious (Fig. 6). Here, at

the beginning, we have used the algorithm that was described

above. Further, using some topology-preserving transforma-

tions, we have tried to make the inner part of the graphs

clearer, as much as possible.

The quotient graphs (Figs. 4, 6) greatly simplify the problem

of enumeration of all Bernal–Fowler configurations. Recall

that, in such configurations, at each vertex two arrows are

incoming and two arrows are outgoing. The simplest algorithm

for enumerating all hydrogen-bond directions includes a large

number of nested loops: 92 for structure I and 68 for structure
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Figure 5
(a) Hexagonal structure H, containing cavities D (at the centre of the unit
cell which is shown by a dashed line), D0 (grey colour) and E (around the
unit cell). (b) Position of oxygen atoms in the unit cell of structure H. Two
equivalent hydrogen bonds are shown by grey arrows.

Figure 6
Quotient graphs of structure sH which are based on the cages D (a) and
D0 (b).



H, because the number of hydrogen bonds is twice the number

of molecules. For each proton configuration, it is necessary to

verify the Bernal–Fowler rules at each vertex of the quotient

graph. Note that it is technically impossible to sort out all

combinations of hydrogen-bond directions, since the numbers

of variants for structures I and H are 292 or 268, respectively.

However, when the verification of the Bernal–Fowler rules is

located not within all the loops, but is distributed between the

loops, depending on the maximum number of hydrogen bonds

incident to a given node, the algorithm becomes quite

acceptable. For structures I and H, the computing times are

about 1 h and 1 min, respectively, for a usual PC. These times

are dependent on the method of hydrogen-bond numbering.

For the quotient graphs of structures I and H, the total number

of configurations are equal to 822 823 440 and 5 568 720 in

complete agreement with our previous result (Kirov, 2010), as

well as with the result of x2.2.

3. The statistics of proton transfer along hydrogen-
bonded chains

As noted in x1, the structure of the proton subsystem of ice

and clathrate hydrates is very changeable. The quotient graphs

of clathrate structures can be useful to study the topological

regularities of the proton transfer along hydrogen-bonded

chains. The advantage of the quotient graphs over ordinary

crystallographic depiction is that closed hydrogen-bonded

cycles within the unit cell and on its faces are completely

equivalent. Therefore, we do not have the dependence on the

choice of the unit cell (although the image of the quotient

graph has a certain arbitrariness). For example, in the above

algorithm, different cavities may be used as an outer shell. But

this choice does not disturb the cyclic structure of the graph

and the topology of hydrogen bonding as a whole.

Changing the structure of the proton subsystem in the ice

and gas hydrate frameworks is due to the appearance of

structural defects, that violate the Bernal–Fowler rules. The

defects cause random shifts of protons along unidirectional

hydrogen-bonded chains (Petrenko & Whitworth, 1999). In

the model representation, the proton motion produces a

reversal of the arrows along the random directed path. The

closing of the circuit causes the disappearance of the defect.

For the quotient graphs, the distributions in the length of the

n-step paths (number of hydrogen bonds) are shown in Fig. 7.

White bars correspond to the paths which are ended by the

self-crossing. Black bars correspond to the closed loop only. In

both cases, 10 000 000 chains were used to construct the

probability distribution. Note that some of these cycles

correspond to artificial infinite loops passing through the unit

cell (see seven-member cycles in structure I). All these arti-

ficial cycles can be excluded as we have initial coordinates of

oxygen atoms. However, it is remarkable that a large part of

all the closed circuits in Fig. 7 are pentagonal. Even a greater

fraction of the elementary (hexagonal) cycles was obtained for

large simulation boxes of hexagonal and cubic ice (Rahman,

1972). However, it does not mean that in bulk ice and gas

hydrates the structural change occurs so frequently due to the

reversal of the direction of hydrogen bonds inside the

elementary cycles (pentagons, hexagons). The point is that

when the cyclic closure was found, we changed the direction of

hydrogen bonds only within the revealed closed loops, and we

ignored the initial portion of the chain together with the point

of the defect. For a more realistic simulation of the structural

changes, it is necessary to take into account the initial part of

the circuit, as well as the interaction between the defects.

4. Concluding remarks

The structural features of ice-like systems, which are due to

the presence of a huge number of nonequivalent proton

configurations, justify the emergence of new theoretical

approaches. A detailed investigation of the properties of

clathrate hydrates can be performed on the basis of a repre-

sentative set of symmetrically distinct proton configurations.

In particular, complete lists of all Bernal–Fowler configura-

tions for different sizes of the cells are interesting as the

representative sets. A construction of the quotient graphs for

clathrate frameworks is a new way of visualizing the hydrogen-

bonded network, which facilitates the study of the proton

disorder. For systems with PBCs, this approach best corre-

sponds to the adjacency matrix, in which cycles at the surface

of, and inside, the cell are also equivalent. For larger unit cells,

such as the unit cell of structure II, containing 136 molecules,

(Sloan, 1998) or for expanded unit cells, the visual perception

of the quotient graphs is rather difficult. In this situation, the

understandable and comfortable quotient graphs for struc-

tures I and H are also of methodological interest for devel-

opment and debugging of general algorithms for the study of

the structure and properties of clathrate hydrates, taking into

account the proton disorder.

Structures I and H have symmetry Pm3n and P6/mmm. The

orders of the crystal classes (number of non-translated

symmetry operations), according to Hahn (2006), are 48 and

24, respectively. For each of these unit cells, we can approxi-

mately estimate the number of symmetrically distinct proton

configurations by dividing the total numbers of configurations

822 823 440 and 5 568 720 by the orders of the crystal classes,

because the vast majority of the proton configurations in these

rather large cells are not symmetrical (symmetry P1). The

exact numbers of the symmetry-distinct proton configurations

in these cells are equal to 17 151 190 and 232 261, respectively
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Figure 7
The probability of occurrence (fraction) of n-membered unidirectional
hydrogen-bonded chains in the quotient graph: closed loops (black bars)
and paths which are ended by the self-crossing (white bars).



(Kirov, 2010). The approximation error is less than 0.1% in

both cases. Note that the quotient graphs may well be used to

analyse the symmetry of proton configurations. For this it is

necessary to specify the permutations of the serial numbers of

bonds and nodes, corresponding to the generators of

symmetry groups, and then calculate the permutation corre-

sponding to the rest of the symmetry operations. These

permutations can be used in the selection of symmetry-distinct

proton configurations. Similarly, we can analyse the general-

ized symmetry (anti-symmetry), which is related to the

reversal of all hydrogen bonds (Kirov, 2014). For large cells it

allows us to reduce the list of different configurations

approximately twice. Finally, note that for each configuration

of the oriented quotient graph we can estimate the total dipole

moment of the unit cell as a vector sum of hydrogen-bond

dipoles. These vectors are determined in the initial geometry

and directed from one oxygen to another. Each configuration

of the quotient graph determines only the signs of these

directions (+ or �).
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